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Abstract

This paper discusses the experimentally measured free–free dynamics of three small-scale vibration
isolator models: two single-stage isolators and one two-stage isolator. The first comprises two steel plates
and one rubber element, the second two steel plates and four rubber elements, and the third three steel
plates and eight rubber elements. The natural frequencies, mode shapes and associated modal damping
derived from curve-fitting procedures applied to the measured frequency-response functions (FRFs) are
presented. The modal behaviour of the isolators is more complicated than might at first be assumed, a
major feature being significant coupling between different degrees of freedom. The modal properties can be
used to reconstruct a complete set of FRFs for the isolator, including FRFs which were not measured
directly. Vibration isolators are often characterised through the use of four-pole parameters or various
transmissibilities, and so methods for calculating these parameters from the reconstructed FRFs are
also given.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is concerned with the dynamics of three small-scale vibration isolator models, two
single-stage ones and one two-stage one, consisting of various combinations of rubber and steel
elements. The work described is part of a collaborative programme of measurements undertaken
see front matter r 2005 Elsevier Ltd. All rights reserved.
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by the Defence Science and Technology Organisation (DSTO), Australia, to provide data for
comparison to mathematical models developed by Defence Research & Development Canada
(DRDC). Measurements and analysis based on a simple peak-picking approach for the two
single-stage isolator models are presented in Forrest [1], while more detailed modal analysis of the
two-stage isolator is given in Forrest [2]. The eventual aim is to obtain accurate models of real
vibration-isolator assemblies that could form part of an overall model for structural vibration
transmission in ships or submarines. An overview of foundation design issues, including isolator
impedance is given in Tso et al. [3].

The current work investigates isolator dynamics in the (approximately) free–free state. This has
the advantage that frequency-response functions (FRFs) can be easily measured in all directions,
with no constraints on any of the translational or rotational modes, or on coupling between
motion in different directions. Modal analysis of the measured FRFs can give clear insight into an
isolator’s dynamics and it is a simple procedure to calculate the isolator’s response to any
generalised loading condition from the modal properties (see Refs. [4] or [5]). However, the
dynamic characteristics of rubber depend on static pre-load, temperature and the frequency and
amplitude of vibration, none of which are readily controlled in a free–free situation. Lindley [6]
discusses these issues with others, Kari et al. [7] discuss temperature effects and Dickens [8]
discusses static load effects. Warley [9] gives a method for selecting rubber materials for a
particular isolator performance. Characterisations of the dynamics of an isolator include its
blocked impedance as described in Verheij [10], or its four-pole parameters as described in
Norwood and Dickens [11]. A method and testing machine to determine the four-pole parameters
is described by Dickens and Norwood [12]. While these approaches can take the effects of various
conditions into account, they deal either with the basic material properties of rubber or with one-
dimensional translational dynamics, usually in the axial direction alone, where coupling between
directions is assumed to be negligible.

The following sections describe the isolator models, the measurement method, the modal
analysis of the measured FRFs, and the derivation of the four-pole parameters and some
transmissibilities from the reconstructed FRFs.
2. Experimental equipment and method

The dimensions of the three isolator models examined are given in Figs. 1–3. The three principal
directions X (lateral), Y (transverse) and Z (axial) are indicated in the top views of each figure.
The first single-stage isolator, which will be referred to as the ‘‘small’’ isolator, is shown in
Fig. 1. It consists of two small steel plates and one rubber element. Fig. 2 shows the second
single-stage isolator, which will be referred to as the ‘‘medium’’ isolator. It consists of two
steel plates and four rubber elements. The two-stage isolator, consisting of three steel plates
and eight rubber elements, is shown in Fig. 3. As shown, the plates each have three threaded holes
in each edge, and the end plates have one threaded hole in their outward faces. These holes allow
screws to be used to attach suspension strings to the isolators. Each small plate has a mass
of 640 g, each larger plate is 2687 g, while each rubber element is 31 g. This gives total masses
of about 1.3 kg for the small isolator, 5.5 kg for the medium isolator, and 8.3 kg for the two-
stage isolator.



ARTICLE IN PRESS

Y

XZ

72

17.5 17.5255 50 5

24
24
24

TOP

SIDE END

60

60

Fig. 1. The construction and dimensions (mm) of the small vibration isolator model, showing the coordinate directions

X, Y and Z in the top view.
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Fig. 2. The construction and dimensions (mm) of the medium vibration isolator model.
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Fig. 3. The construction and dimensions (mm) of the two-stage vibration isolator model.
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Fig. 4 shows all three isolator models set up for three different sets of measurements in each of
the principal directions. The isolators were suspended by one or two strings as shown, each string
consisting of a few strands of light 20 lb fishing line, with a hanging length of about 800mm,
which reasonably approximates the free–free state. Rigid-body modes with zero frequency are
replaced by similar free vibration modes with low natural frequencies of a few Hz, which thus do
not interfere with the modes of interest. These modified rigid-body modes include translations
such as the pendulum mode of an isolator as a mass on its suspension string, or rotations due to
the twisting of the string acting as a torsional spring, or rocking rotations of the isolator about its
suspension attachment point acting as a pivot. These particular modes are easy to induce by hand,
and good estimates of their periods can be obtained by counting oscillations and timing with a
stopwatch.

For each measurement set, the suspended isolator model was excited by a 0.24mV/N impulse
hammer with a teflon tip as indicated by the arrows in Fig. 4. Small 10mV/g accelerometers of
mass less than 3 g, secured with wax, were used to measure the response of the isolator at corner
positions on each plate as illustrated in Fig. 4. With the assumption that the plates are effectively
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Fig. 4. The setups for measurements for (a)–(c) the small isolator, (d)–(f) the medium isolator and (g)–(i) the two-stage

isolator in the three principal directions. The first setup in each row is for measurement in the lateral (X) direction, the

second in the transverse (Y) direction, and the third in the axial (Z) direction. The plates are labelled A and B (and C for

the two-stage case) while the four corners of each plate are labelled 1, 2, 3 and 4. One vertical suspension string was used

for measurements in the X- or Y-direction, while two strings were used for those in the Z-direction. The accelerometers

are shown as small cylinders; those at position 4 on the plates in (c), (f) and (i) are obscured. The isolators were excited

in each case by the modal hammer applied as indicated by the arrows.
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rigid in the relatively low-frequency range of interest, this arrangement of accelerometers allows a
full picture of the isolator dynamics in the given direction to be obtained. Data was acquired using
an HP 3566A FFT analyser controlled by a laptop PC, onto which the measured FRFs were
saved. Because the measured signals were transient and decayed quickly, no windowing was
necessary. Each saved FRF was based on the average of five measurements.
3. Modal analysis

A quick way to estimate natural frequencies and mode shapes is through modal peak picking as
described in the HP application note [13]. At a resonance of a lightly damped system, the
imaginary parts of its FRFs will become maximum while the real parts become zero, since the
phase at resonance is �90�. Plotting the imaginary parts of the FRFs thus allows an estimate for
the natural frequencies to be made from the position of the peaks, and for the mode shapes from
the relative heights of the peaks for a given resonance across all the FRFs. However, this method
is not particularly accurate, especially when the damping becomes high or there are closely spaced
modes, both of which can result in the FRFs having significantly non-zero real parts at the
resonances in question. Peak picking is not suited to determining modal damping either.

Manual peak picking was therefore used as a way to understand the responses before
processing in more detail using the curve-fitting routines in the ICATS MODENT modal-analysis
software package. The results tabulated in the following sections were calculated using the
nonlinear least-squares multi-FRF methods NLLS-1 and NLLS-2, which analyse all FRFs at
once, but require initial guesses for natural frequencies. Peak picking from imaginary parts was
particularly useful to estimate these frequencies in cases of closely spaced modes, because the signs
of the peaks alternate on at least one coordinate’s FRF plot, allowing the modes to be clearly
distinguished. Since the MODENT peak-picking function only allows an FRF magnitude plot,
the imaginary parts were plotted and analysed separately, and are presented in the following
sections.

The mode shapes were deduced from both the plots of FRF imaginary parts and animation
using the MODESH component of the ICATS suite. For particularly complicated modes,
snapshots of the mode-shape animations are given as well as modal data and mode-shape
schematics. Numerical data for the mode-shape vectors appears in Appendix A.

A driving-point FRF is required for curve-fitting approaches such as those used by MODENT
to work. It is assumed that at the relatively low frequencies under consideration, the steel plates
are rigid, so that the accelerometer in line with the force’s line of action gives the driving-point
response. These are the accelerometers at A2 in Fig. 4(a), (d) and (g); at A3 in Fig. 4(b), (e) and
(h); and at A1 in Fig. 4(c), (f) and (i).
3.1. Results for the small isolator

The small isolator represents the simplest configuration of the three isolators examined. The
modes observed happen to match the simple set of modes that might be expected, namely one
translational mode in each principal direction, and one rotational mode about each principal axis.
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The imaginary parts of the FRFs measured in the X-direction for the small isolator are given in
Fig. 5, labelled with the position of the accelerometer from whose response they are derived.
Examining all four plots reveals peaks at about 40 and 100Hz, apart from some noisy peaks
below 20Hz which are due to the modified rigid-body modes discussed in Section 2. As an
example of using the relative peak sizes to deduce a mode shape, the 40Hz mode has A2 and A3
moving in equal and opposite directions, and B2 and B3 equal and opposite but also opposite to
A2 and A3. This means that plate A is rotating in the opposite direction to plate B, so the mode is
the rotational mode about the Z-axis. Similarly, the 100Hz mode is the translational mode in the
X-direction. The more precise natural frequencies fn as well as modal damping loss factors Zn

calculated by MODENT curve-fitting are given in Table 1. Schematics of these mode shapes are
given in Fig. 6, which is referenced by Table 1.

The imaginary parts of the Y-direction FRFs are given in Fig. 7, showing peaks at about 40 and
94Hz. The modal parameters from the FRFs are given in Table 2. Once again, there is the
rotational mode about Z as detected previously, plus a new translational mode. The different
measurements in Tables 1 and 2 of the same rotational mode can give an indication of the
accuracy of the calculated modal parameters. While the two values of the natural frequency are
within 0.3% of each other, the two values of the modal damping are more than 6% apart, a much
higher degree of uncertainty.

The imaginary parts of the Z-direction FRFs are given in Fig. 8. There are two clear natural
frequencies on all the FRFs, namely those at about 49 and 134Hz. Examining the signs of the
imaginary parts, it is easy to see that the first is the opposite rotation of the two plates about the
X-axis, while the second is the opposite translation of the two plates in the Z-direction.

There is also a cluster of overlapping peaks at and below about 100Hz. The various sign
combinations result in B1 and B3 clearly showing three distinct peaks at about 93, 96 and 100Hz.
The details of these modes, along with the other two, appear in Table 3. Modes 2 and 4 both
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Fig. 5. The imaginary parts of the FRFs measured as depicted in Fig. 4(a) for the small isolator in the X-direction.
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Table 1

Natural frequencies, modal damping and corresponding mode shapes for the small isolator in the X-direction

Mode fn (Hz) Zn Description Figure

1 39.9 0.0633 Rotation about Z 6(a)

2 100.6 0.0867 Translation in X 6(b)
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Fig. 6. Modes observed for the small isolator include (a) rotation about Z, (b) translation in X or Y, (c) rotation about

X or Y, (d) equal tilting of both plates about X or Y, and (e) translation in Z.
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Fig. 7. The imaginary parts of the FRFs measured as depicted in Fig. 4(b) for the small isolator in the Y-direction.

Table 2

Natural frequencies, modal damping and corresponding mode shapes for the small isolator in the Y-direction

Mode fn (Hz) Zn Description Figure

1 39.8 0.0594 Rotation about Z (same as mode 1, Table 1) 6(a)

2 94.4 0.1137 Translation in Y 6(b)

J.A. Forrest / Journal of Sound and Vibration 289 (2006) 382–412388
involve equal tilting of the plates as depicted in Fig. 6(d) (about a different axis in each case). At
first this looks something like a rigid-body rotation about X or Y (as the case may be), but the
modified rigid-body modes due to the suspension of the isolators are known to have much lower
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Fig. 8. The imaginary parts of the FRFs measured as depicted in Fig. 4(c) for the small isolator in the Z-direction.

Table 3

Natural frequencies, modal damping and corresponding mode shapes for the small isolator in the Z-direction

Mode fn (Hz) Zn Description Figure

1 49.1 0.0650 Rotation about X 6(c)

2 93.1 0.0760 Equal tilting about X with some diagonal rotation (mode 2, Table 2) 6(d), 6(b), 9

3 95.8 0.0705 Rotation about Y 6(c)

4 99.6 0.0675 Equal tilting about Y (mode 2, Table 1) 6(d), 6(b)

5 134.3 0.1046 Translation in Z 6(e)

J.A. Forrest / Journal of Sound and Vibration 289 (2006) 382–412 389
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frequencies. However, if the diagram of equal tilting in Fig. 6(d) is turned slightly so that the
plates are horizontal, it becomes clear that it has the same relative plate motion as the diagram
of the translational modes in Fig. 6(b). Thus the equal-tilting modes are manifestations in the
Z-direction of translational modes in the X- or Y-directions. Equal tilting about X or Y results in
plate translation in Y or X respectively, and vice versa, due to the coupling effects introduced by
the resultant deformation of the rubber element in each case. This is borne out by the similar
frequencies of these modes across the tables of results.

Mode 2 in Table 3 is complicated by additional rotation of the plates about their diagonals as
illustrated by the animation snapshot of Fig. 9. This is perhaps why it is not as good a match to its
corresponding translation mode as mode 4 is—there are two effects occurring which could not be
separated by the analysis employed.

3.2. Results for the medium isolator

The modes of the medium isolator did not correspond particularly closely with principal-axis
translations and rotations, or even with modes of the other two isolators. No axial translation
mode was observed, nor were there straightforward correspondences between particular modes in
different directions.

The imaginary parts of the FRFs measured for the medium isolator in the X-direction are given
in Fig. 10. There is a cluster of three peaks between about 60 and 75Hz, and a very low peak at
about 116Hz. The detailed results are given in Table 4, with schematics of the modes displayed in
Fig. 11. It is interesting to note that both modes 1 and 2 are rotations about Z, but are clearly
distinct in the imaginary-part plots, particularly those for A3 and B3. Mode 4 is a highly complex
rotation about Z, resulting in significant phase delay between the motions of the two measured
sides (A2–B2 and A3–B3): they are not exactly in-phase or out-of-phase with each other, a feature
particularly noticeable in the animation of the mode. This is possible despite each end plate being
rigid, because the two corners represent 2 dof and so can move independently. Mode 3 has the
character of a translation in X, because A2 and A3 move in the same direction while B2 and B3
move in the opposite direction, but with a superimposed rotation as illustrated in Fig. 12.

As can be seen in Fig. 13, the situation for the Y-direction FRFs is similar to that for the
X-direction, with a cluster of peaks between 60 and 75Hz, and one, or maybe more, very small
peaks above 100Hz. The detailed results are given in Table 5, and the first two schematics of
Fig. 11 again apply. While there is an almost 3% difference in the calculated natural frequencies,
it seems probable that the mode 1 rotation about Z is the same as the mode 1 rotation observed in
the X-direction and given in Table 4. The next two modes are more ambiguous. Their frequencies
are within 1.5% of the modes with the same numbers in Table 4. However, mode 2 appears here as
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Fig. 9. Snapshot of mode 2 in the Z-direction for the small isolator, showing the rotations about A2–A4 and B1–B3

superimposed on the tilting of the plates about X.



ARTICLE IN PRESS

0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

im
ag

. p
t. 

(g
/N

)

A2

0 50 100 150 200 250
-0.3

-0.2

-0.1

0

0.1

0.2

frequency (Hz)

im
ag

. p
t. 

(g
/N

)

A3

0 50 100 150 200 250
-0.4

-0.3

-0.2

-0.1

0

0.1
B2

0 50 100 150 200 250
-0.2

-0.1

0

0.1

0.2

0.3

frequency (Hz)

B3

Fig. 10. The imaginary parts of the FRFs measured as depicted in Fig. 4(d) for the medium isolator in the X-direction.

Table 4

Natural frequencies, modal damping and corresponding mode shapes for the medium isolator in the X-direction

Mode fn (Hz) Zn Description Figure

1 60.9 0.1130 Rotation about Z 11(a)

2 64.0 0.0366 Rotation about Z 11(a)

3 74.4 0.0594 Translation in X with greater motion on A3–B3 side 11(b), 12

4 116.3 0.1020 Rotation about Z with phase delay between the two sides 11(a)
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(a) (b) (c) (d)
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X or Y
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Fig. 11. Modes observed for the medium isolator include (a) rotation about Z, (b) translation in X or Y, (c) equal tilting

of both plates about X or Y, and (d) rotation about X or Y.
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Fig. 12. Snapshot of mode 3 in the X-direction for the medium isolator, showing how the uneven translations in X on

either side result in rotation of the plates.
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Fig. 13. The imaginary parts of the FRFs measured as depicted in Fig. 4(e) for the medium isolator in the Y-direction.

Table 5

Natural frequencies, modal damping and corresponding mode shapes for the medium isolator in the Y-direction

Mode fn (Hz) Zn Description Figure

1 62.6 0.1586 Rotation about Z (same as mode 1, Table 4) 11(a)

2 64.6 0.0669 Translation in Y with phase delay between the two sides (mode 2, Table 4) 11(b)

3 75.5 0.0580 Rotation about Z (mode 3, Table 4) 11(a)

4 102.4 0.0775 Translation in Y 11(b)

J.A. Forrest / Journal of Sound and Vibration 289 (2006) 382–412392
a translation in Y (albeit noticeably complex when animated), but as a rotation about Z in the
X-direction measurements. Likewise, mode 3 appears as a rotation about Z here, but as a transla-
tion in X in Table 4. Neither of these two modes is a pure translation, and so the translation in X
results in some rotation being detected in the Y-direction (mode 3), and vice versa (mode 2).
Nevertheless, mode 4 at about 102Hz does appear to be pure translation in Y, with no
corresponding response detected in the X-direction.

Fig. 14 gives the imaginary parts of the Z-direction FRFs. Detailed results are given in Table 6,
and the schematics of Fig. 11 apply. The peaks for the first two modes at about 66 and 74Hz are
quite small, and correspond to two equal-tilting modes, the first about X, the second about Y. As
discussed for the similar modes in the case of the small isolator, these modes are manifestations in
the Z-direction of translations in Y or X respectively, showing that coupling between motion in
the different directions is also important for the medium isolator. The other modes are self-
explanatory, with Fig. 15 providing extra illustration of the less easily categorised modes 3 and 6.
What is perhaps remarkable is that no mode of simple translation in Z is observed in the
frequency range considered. It is clear from all the results that the dynamics of the medium
isolator give rise to numbers of similar, relatively complicated, modes with only subtle differences.
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Fig. 14. The imaginary parts of the FRFs measured as depicted in Fig. 4(f) for the medium isolator in the Z-direction.

Table 6

Natural frequencies, modal damping and corresponding mode shapes for the medium isolator in the Z-direction

Mode fn (Hz) Zn Description Figure

1 65.7 0.0794 Equal tilting about X (same as mode 2, Table 5) 11(c), 11(b)

2 74.4 0.0633 Equal tilting about Y (same as mode 3, Table 4) 11(c), 11(b)

3 118.2 0.0758 Rotation about Y with some rotation about 2–4 diagonals,

A2 and B2 hardly move

11(d), 15(a)

4 156.6 0.0798 Rotation about X 11(d)

5 189.8 0.0585 Rotation about X with some rotation about 1–3 diagonals 11(d)

6 236.3 0.0651 Rotation about X with some rotation about 2–4 diagonals,

A4 and B4 hardly move

11(d), 15(b)
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Fig. 15. Snapshots of (a) mode 3 and (b) mode 6 in the Z-direction for the medium isolator. Corners A2 and B2 in (a)

and A4 and B4 in (b) move very little, resulting in (a) having the character of a rotation about Y and (b) that of one

about X, despite the diagonal rotations being about the 2–4 diagonals in both cases.
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Fig. 16. The imaginary parts of the FRFs measured as depicted in Fig. 4(g) for the two-stage isolator in the

X- direction.
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3.3. Results for the two-stage isolator

The addition of the second stage in the two-stage isolator introduces extra degrees of freedom.
Despite this and the similarity in design to the medium isolator, the modes observed are more
easily categorised as principal-axis translations and rotations than the medium isolator’s. The
main distinguishing feature of the two-stage isolator is that these modes can be of antisymmetric
or symmetric type.

The imaginary parts of the FRFs measured for the two-stage isolator in the X-direction are
given in Fig. 16. Examining all six plots reveals peaks at five frequencies of about 47, 65, 67, 82
and 101Hz. The detailed modal data is given in Table 7, and schematics of the mode shapes are
given in Fig. 17. The 47 and 82Hz modes illustrate the two mode types. The relative peak sizes for
mode 1 (47Hz) show A2 and A3 moving in equal and opposite directions, nearly zero motion of
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Table 7

Natural frequencies, modal damping and corresponding mode shapes for the two-stage isolator in the X-direction

Mode fn (Hz) Zn Description Figure

1 47.2 0.0464 Antisymmetric rotation about Z 17(a)

2 65.5 0.0596 Antisymmetric translation in X 17(b)

3 67.5 0.0518 Symmetric translation in X 17(c)

4 82.3 0.0528 Symmetric rotation about Z 17(d)

5 101.7 0.0601 Symmetric translation in X with small rotation of plate A about Z 17(c)

A
B

C

A
B

C

(a) (b) (c) (d)

A
B

C

A
B

C

Z

X or Y

Fig. 17. Modes observed for the two-stage isolator in the X- and Y-directions include (a) antisymmetric rotation

about Z, (b) antisymmetric translation in X or Y, (c) symmetric translation in X or Y, and (d) symmetric rotation

about Z.

J.A. Forrest / Journal of Sound and Vibration 289 (2006) 382–412 395
B2 and B3, and C2 and C3 equal and opposite but also opposite to A2 and A3. Thus plate A is
rotating in the opposite direction to plate C while plate B is stationary, an antisymmetric
rotational mode about Z. By similar reasoning, mode 4 (82Hz) has plates A and C rotating in the
same direction, with plate B rotating in the opposite direction with greater magnitude, giving a
symmetric rotational mode about Z. Modes 3 and 5 are very similar to each other, as is the case
with several of the medium isolator’s modes. Modes 2 and 3 are very close in frequency and are
only clearly discernible as separate peaks on the FRF imaginary parts for C2 and C3, which
demonstrates the value of these plots.

Fig. 18 shows the imaginary parts of the Y-direction FRFs. The modal parameters are detailed
in Table 8. Once again there are five modes, with the two rotational modes (1 and 4) being the
same modes as detected in the X-direction, and with the translational modes being of similar type
to the ones in the X-direction. Thus the schematics of Fig. 17 again apply to the mode-shape
descriptions. Mode 5, which appears as very small peaks on the plots of imaginary parts,
combines a rotation of plate A with the overall symmetric translation. This is illustrated in the
snapshot of Fig. 19.

The Z-direction FRFs’ imaginary parts are shown in Fig. 20. The detailed results are given in
Table 9 and the schematics of the corresponding mode shapes appear in Fig. 21. Modes 4 and 5
are very similar antisymmetric translations with superimposed rotations. In mode 4, the moving
plates A and C exhibit some rotation about Y as well as the main translation in the Z-direction,
while in mode 5 they exhibit some rotation about their 1–3 diagonals as well as the translation.
This is illustrated in Figs. 22(a) and (b), respectively.

The tilting modes (modes 1 and 2) have all three plates rotating equally and in the same
direction around either the X- or Y-axis. If, as for the similar modes observed for the small and
medium isolators, the depiction of these tilting modes as shown in Fig. 21(a) is rotated a little so
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Fig. 19. Snapshot of mode 5 in the Y-direction for the two-stage isolator, showing the rotation of plate A superimposed

on the underlying symmetric translation.

Table 8

Natural frequencies, modal damping and corresponding mode shapes for the two-stage isolator in the Y-direction

Mode fn (Hz) Zn Description Figure

1 47.2 0.0470 Antisymmetric rotation about Z (same as mode 1, Table 7) 17(a)

2 61.0 0.0576 Antisymmetric translation in Y 17(b)

3 67.9 0.0548 Symmetric translation in Y 17(c)

4 82.1 0.0570 Symmetric rotation about Z (same as mode 4, Table 7) 17(d)

5 121.3 0.0726 Symmetric translation in Y with large rotation of plate A about Z 17(c), 19
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Fig. 18. The imaginary parts of the FRFs measured as depicted in Fig. 4(h) for the two-stage isolator in the

Y-direction.
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that the plates are horizontal, it matches the depiction of the antisymmetric translation modes
shown in Fig. 17(b). As expected, the natural frequencies of these two modes match those of
the corresponding translation modes listed in Tables 7 and 8 (mode 2 in each table). Thus the
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Fig. 20. The imaginary parts of the FRFs measured as depicted in Fig. 4(i) for the two-stage isolator in the Z-direction.
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Z-direction equal-tilting modes correspond to antisymmetric translation modes in the X- or
Y-directions. Similarly, the antisymmetric rotations about X and Y (modes 3, 6 and 7) depicted
by Fig. 21(b) have frequencies very close to those for symmetric translations in Y or X,
respectively. The translations of plates A and C in X or Y can cause rotations about Y or X, or
vice versa, due to coupling through the rubber elements. Even though plate B is moving in the
horizontal plane in symmetric translation, it does not register any rotation measurable in the
Z-direction, because the rubber–element coupling forces on either face have equal and opposite
Z-components, due to the opposite rotations of plates A and C. Therefore, these antisymmetric
rotational modes most probably correspond to symmetric translation modes in the X- or
Y-directions. This shows that there is significant coupling between the three principal directions
for the two-stage isolator.
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Table 9

Natural frequencies, modal damping and corresponding mode shapes for the two-stage isolator in the Z-direction

Mode fn (Hz) Zn Description Figure

1 61.1 0.0515 Equal tilting about X (mode 2 in Table 8) 21(a), 17(b)

2 65.7 0.0517 Equal tilting about Y (mode 2 in Table 7) 21(a), 17(b)

3 67.6 0.0526 Antisymmetric rotation about Y with some rotation of plate B

(mode 3 in Table 7)

21(b), 17(c)

4 93.0 0.1110 Antisymmetric translation in Z with some rotation about Y 21(c), 22(a)

5 98.3 0.0796 Antisymmetric translation in Z with some rotation about the 1–3

diagonals

21(c), 22(b)

6 100.6 0.0558 Antisymmetric rotation about Y (mode 5 in Table 7) 21(b), 17(c)

7 121.2 0.0621 Antisymmetric rotation about X (mode 5 in Table 8) 21(b), 17(c)

8 155.3 0.0703 Symmetric rotation about Y 21(d)

9 166.9 0.0658 Symmetric translation in Z with small rotation of plate B about Y 21(e)

10 200.8 0.0743 Symmetric rotation about X 21(d)
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Fig. 21. Modes observed for the two-stage isolator in the Z-direction include (a) equal tilting of all plates about X or Y,

(b) antisymmetric rotation about X or Y, (c) antisymmetric translation in Z, (d) symmetric rotation about X or Y, and

(d) symmetric translation in Z.
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Fig. 22. Snapshots of (a) mode 4 and (b) mode 5 in the Z-direction for the two-stage isolator. In both cases the

predominant motion is antisymmetric translation in Z, but there is some superimposed rotation of plates A and C

about Y in (a) and about the 1–3 diagonals in (b).
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4. Four-pole parameters and transmissibilities from modal data

FRFs are the most general characterisation of dynamic response and can easily be manipulated
to obtain responses under specific conditions. The FRF for the response at any of the nodes used
in the measurements to excitation at any node can be generated from the natural frequencies and
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mode shapes obtained by modal analysis. The vector of nodal displacements X is related to the
vector of forces F acting at the nodes by

X ¼ ½H�F, (1)

where ½H� is the matrix of FRFs between the individual forces and displacements. Ewins [4] shows
how to derive this FRF matrix from the modal properties. The final result is

½H� ¼ ½U� ½diagðl2
r � o2Þ��1½U�T ¼ ½U� ½diagð1=ðl2

r � o2ÞÞ� ½U�T, (2)

where ½U� is the matrix of mode shapes as columns, and the central matrix is diagonal with
elements being the differences between the corresponding natural frequencies squared l2

r (r the
mode number) and the angular frequency squared o2. The natural frequencies include the modal
damping expressed as the loss factor Zr such that l2

r ¼ o2
r ð1 þ iZrÞ, where or is the real-number

angular natural frequency calculated from modal analysis.
Fig. 23 compares the reconstructed driving-point FRF, calculated using Eq. (2), to the original

measured driving-point FRF in the Z-direction for the two-stage isolator with a force applied at
corner A1. The agreement between the measured and reconstructed FRFs is quite good, especially
between 50 and 150Hz. Of course, the reconstructed FRF does not include any of the modified
rigid-body modes, and the residual effects of these may be one of the sources of mismatch between
the two FRFs. Another factor is that the modal parameters are the best fit across the full set of 12
measured FRFs, not just the driving-point one. Nevertheless, the reconstructed FRF appears to
be accurate, and the lack of rigid-body modes in the summation would not detract from the use of
such FRFs to determine the behaviour of an isolator as a mount for a machine on a foundation,
where such modes would be constrained anyway.
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Fig. 23. The driving-point acceleration FRF in the Z-direction reconstructed from the modes (solid line) compared to

the original measured FRF (chained line).
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4.1. Calculation of four-pole parameters

The four-pole parameters A, B, C and D relate the force F1 and velocity V1 at the input end of
an isolator to the force F2 and velocity V2 at the output end by [11]

F1

V1

( )
¼

A B

C D

� �
F2

V2

( )
(3)

which is in effect a transfer-matrix formulation. A represents the reciprocal of the force
transmissibility when the output end is blocked (zero velocity) and D represents the reciprocal
velocity transmissibility when the output end is free (zero force). B represents the impedance
between an input force and output velocity when the output is free, while C represents the
mobility between an input velocity and an output force when the output is blocked. The four-pole
approach considers the translational dynamics of the isolator in only one direction at a time,
ignoring other degrees of freedom and any cross-coupling between them. However, the four-pole
parameters can be measured relatively easily using a standardised test procedure such as that
described in Ref. [12], while giving a more complete dynamic description of an isolator than a
single impedance value.

Here the four-pole parameters in the axial (Z) direction will be calculated. Since forces at all
four corners of each end plate must be considered in order to obtain single input and output
forces, the set of measured FRFs is insufficient and the full reconstructed set must be used. A fair
amount of matrix reduction is required to obtain the four-pole parameters from the reconstructed
FRFs. The four-pole approach treats only the end forces and velocities, and then assumes that
there is only axial motion. To begin the process of reduction, either of the 8
 8 FRF matrix
equations that result from (1) for the small and medium isolators can be partitioned between the
two ends of the particular isolator to give

X1

X2

( )
¼

H11 H12

H21 H22

" #
F1

F2

( )
¼

a b

c d

" #
F1

F2

( )
, (4)

where each X contains four corner displacements and each F contains four corner forces in the
Z-direction. Subscript 1 refers to the input end plate and subscript 2 refers to the output end plate.
The a; b; c and d notation for the partitions is introduced for later convenience. The two-stage
isolator has a middle plate as well as the two end ones. Its FRF matrix can be reduced so that only
FRFs relating the two ends of the isolator remain. The 12
 12 FRF matrix equation arising from
Eq. (1) for the two-stage isolator can be partitioned to give

X1

Xm

X2

8><
>:

9>=
>; ¼

H11 H1m H12

Hm1 Hmm Hm2

H21 H2m H22

2
64

3
75

F1

Fm

F2

8><
>:

9>=
>;, (5)

where subscript m refers to the middle plate in addition to the subscripts 1 and 2 for the end
plates. Since the displacements of the middle plate are not of interest here, the second partition
row of Eq. (5) can be removed completely. With the middle plate forces Fm set to zero, the second
partition elements of the first and third partition rows also drop out of the equations. Therefore,
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the problem is reduced to a relationship between plates 1 and 2 alone, expressed in the same form
as Eq. (4). The following discussion can then be applied to any one of the small, medium or two-
stage isolators.

Eq. (4) is cast in terms of vectors of four forces and four displacements at each end of the
isolator, whereas the four-pole parameter equation (3) deals with only one scalar force and one
scalar velocity at each end. The isolator needs to be restricted to linear axial motion to achieve the
state that the four-pole parameters are defined for. Once this is done, the sets of four forces and
four displacements can be reduced to single force–velocity pairs. There are two approaches to
achieve this restriction, both exactly equivalent for an ideal symmetrical isolator. The first is
to assume that all four corner displacements of an end plate are the same; the second is to
assume that equal forces are applied to each of the corners of an end plate, resulting in a net
force equivalent to a single, centrally applied input force. The first approach is closer to the
conditions of the universal test method of Ref. [12] and is used in an earlier paper [2] to cal-
culate four-pole parameters for the two-stage isolator. However, that calculation requires that
the FRF matrix is inverted to give a dynamic-stiffness matrix, in order to be able to easily sum
the corner forces to get the resultant single force. As they stand, the full FRF matrices for all
three isolators overspecify the problem, because only 3 dof (for example, three corner
displacements) are required to fully define the axial components of the motion of a rigid end
plate. This means that not all the rows of the FRF matrices are linearly independent, the ranks of
the matrices are less than their dimensions, and so the matrices are singular and cannot be
inverted. The approach works for the two-stage isolator only because of the reduction of the FRF
matrix of Eq. (2) to a size where its rank and dimensions are equal. Complicated rearrangement of
the equations to remove redundant degrees of freedom and account for the forces acting along
them would be needed to be able to obtain dynamic-stiffness matrices for the small and medium
isolators.

Therefore the second approach of starting with four equal forces at the four corners of each end
plate will be used here. The two-stage isolator’s results using this method are different from those
in Ref. [2], but probably more reliable. To give a single centrally applied force F1 acting on the
input end, the elements of F1 in Eq. (4) are all set to 1

4
F1; likewise, the elements of F2 are all set to

1
4

F2 to give a total force of F2 at the output end. The input and output end displacements, X 1 and
X 2 say, are then given by the averages of the four corner displacements at each end, that is, one-
quarter of the sums of the elements of X1 and X2, respectively. For a perfectly symmetrical
isolator, the four corner displacements at an end would all be equal and equal to the
corresponding four-pole displacement under the assumed loading conditions—the averaging
evens out the effect of irregularities in the real isolators. Applying the two assumptions in turn
allows (4) to be simplified to the following 2 
 2 system:

X 1

X 2

( )
¼

1

16

P
ajk

P
bjkP

gjk

P
djk

" #
F1

F2

( )
¼

as bs

gs ds

" #
F1

F2

( )
, (6)

where the ajk, bjk, gjk and djk are the elements of the partitions a; b; c and d; respectively in Eq. (4).
To convert Eq. (6) into four-pole parameter form requires the substitutions X 1 ¼ V1=io and
X 2 ¼ V2=io to introduce the end velocities V1 and V2, and F2 ¼ �F 0

2 to change the output force
into that which would act on the next element of a four-pole chain instead of the force which acts
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on the isolator’s end. Making these substitutions in Eq. (6) and rearranging gives

F1

V1

( )
¼

ds=gs 16=iogs

ioðasds � bsgsÞ=16gs as=gs

" #
F 0

2

V2

( )
¼

A B

C D

� �
F 0

2

V2

( )
(7)

which is of the same form as Eq. (3).
The axial four-pole parameters for the three isolators can now be calculated by reconstructing

the FRF matrix for each one using Eq. (2), then following the procedure outlined in Eqs. (4)–(7).
The final results, calculated using MATLAB, are plotted in Figs. 24–26. Parameters A and D are
nearly equal for each isolator, equality of these two parameters being a feature of a symmetric
isolator (one that behaves the same dynamically when the input and output ends are swapped)
[11]. For the small and medium isolators, Figs. 24 and 25, A and D vary only slightly from unity
(0 dB). A massless isolator would have A ¼ D ¼ 1, but would also have B ¼ 0 [11], which latter
condition is clearly not the case here. The small and medium isolators each have two identical end
plates separated by one or more rubber elements, which with their relatively low mass act like
massless springs. Thus force must be transmitted identically when the output is blocked. When the
output is free, both ends move in the same way even at the axial resonance (albeit with greater
amplitude then), so the ratio of their velocities remains unity. On the other hand, A and D for the
two-stage isolator, Fig. 26, show a dip at 167Hz. This corresponds to the symmetric translation
mode (number 9 in Table 9), where the middle plate, as well as the end plates, is moving in
resonance. The inertia of the middle plate serves to increase the force or velocity (as the case
may be) transmitted to the output. Elsewhere in the frequency range shown the middle plate is
stationary and A and D are unity.
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Fig. 24. The magnitudes of the four-pole parameters A, B, C and D for the small isolator calculated from its

reconstructed FRFs for the Z-direction.
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Fig. 25. The magnitudes of the four-pole parameters A, B, C and D for the medium isolator calculated from its

reconstructed FRFs for the Z-direction.
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Fig. 26. The magnitudes of the four-pole parameters A, B, C and D for the two-stage isolator calculated from its

reconstructed FRFs for the Z-direction.
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It is interesting to note which modes correspond to the peaks or dips in the other two
parameters B and C. For the small isolator, Fig. 24, B has a prominent dip at 134Hz, the axial
translation mode, while C has a prominent peak at 95Hz, the rotation about Y mode. The mixed
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modes of the medium isolator show up strongly in Fig. 25: B has dips at every mode except

the 74Hz equal tilting about Y and 157Hz rotation about X, and C has peaks at every mode
except the 118Hz rotation about Y and the 157Hz rotation about X. Curiously, C also has a
peak at 145Hz, which does not correspond to any of the modes observed for the medium
isolator. The results for the two-stage isolator, Fig. 26, show the influence of fewer modes. B
has its most prominent dip with components at both the 93Hz antisymmetric translation in Z

and 101Hz antisymmetric rotation about Y, with a secondary dip at the 167Hz symmetric
translation in Z mode. C shows some influence of the equal-tilting modes around 64Hz, but
the main peak is made up of the 155Hz symmetric rotation about Y and, once again, the
167Hz symmetric translation in Z. It is not clear why modes which are not purely
axial translation can appear so strongly, particularly in the case of the medium isolator, under
the condition of centrally applied forces. The answer lies at least in part with physical asym-
metries of the isolators analysed, allowing four equal corner forces to induce non-translational
modes.
4.2. Calculation of transmissibilities

Transmissibilities are usually defined as the ratio of the velocity at one point of a structure to
the velocity at another point. In the frequency domain, this is the same as the ratio of the
corresponding displacements or accelerations, as any io factors cancel. Since the boundary
conditions and applied loading can be specified in any way, the definition of a transmissibility
tends to be somewhat arbitrary: many different transmissibilities between the same two points
become possible. A transmissibility is thus only really useful as an indication of the dynamics of a
structure in a specific situation, not as a general characterisation.

In the current discussion, the axial dynamics of the isolators are of interest. Here a
transmissibility will be defined as the ratio of an output velocity to an input velocity in the same
direction. The input end of the isolator is that which has the (single) input force applied to it, while
the output end is the opposite end of the isolator. The isolator is otherwise unconstrained and
free.

The axial transmissibility of an isolator with a force applied centrally to one end is given by the
reciprocal of the four-pole parameter D. Thus the transmissibilities with this force input for the
small, medium and two-stage isolators are given by the negative values in dB (since the dB scale is
logarithmic) of the parameters D plotted in Figs. 24–26, respectively. The axial transmissibilities
of the small and medium isolators are therefore unity, and that of the two-stage isolator is also
unity for most of the frequency range up to 250Hz, but with a resonance at the 167Hz symmetric
translation mode.

The axial transmissibility of an isolator with an axial force applied off-centre is more
complicated to define. Whereas a central force is assumed to induce only axial translation in these
symmetrical isolators, an off-centre force is equivalent to the central force plus two moments, one
acting about the X-axis, the other about the Y-axis. These moments induce rotations and so the
total motion in the axial direction must be described in terms of 3 dof. The most intuitive are
perhaps the translation in the Z-direction of the centre of an end plate, the rotation about its
X-axis, and the rotation about its Y-axis. These 3 dof can be denoted by the displacements W, Y
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and F, respectively. Transmissibilities in all three should be considered if a reasonable part of the
overall picture of the isolator’s response is to be obtained.

Since the four corner displacements of an end plate include a redundant coordinate, it is easiest
to write them in terms of the three independent degrees of freedom and then solve for W, Y and F.
While it is possible to get a pair of solutions in each case, each solution involving only two corner
displacements and theoretically equivalent, it is better to include all four corner displacements in a
single solution for each of W, Y and F to average out differences that exist in the actual results.
Assuming small angular displacements, the solutions for the input plate are

W ¼ ðX 1 þ X 2 þ X 3 þ X 4Þ=4,

Y ¼ ð�X 1 � X 2 þ X 3 þ X 4Þ=2l,

F ¼ ðX 1 � X 2 � X 3 þ X 4Þ=2l, ð8Þ

where X 1, X 2, X 3 and X 4 are the elements of X1 in Eq. (4) and l is the sidelength of the square end
plate. Similar equations can be written for the displacement and rotations of the output end plate.
With the off-centre input force applied at corner 1, F1 ¼ F and Fj ¼ 0 for all other corners j
(including at the output end), resulting in X j ¼ Hj1F for all the corner displacements, where Hj1

represents the jth element of the first column of the whole FRF matrix in Eq. (4). These Hj1 FRFs
happen to correspond to the FRFs that were measured. Substituting FRF expressions for the X j

in Eq. (8) and the corresponding equations for the output end, then taking the ratios of each
displacement and rotation, gives

TW ¼
H51 þ H61 þ H71 þ H81

H11 þ H21 þ H31 þ H41
,

TY ¼
�H51 � H61 þ H71 þ H81

�H11 � H21 þ H31 þ H41
,

TF ¼
H51 � H61 � H71 þ H81

H11 � H21 � H31 þ H41
, ð9Þ
0 50 100 150 200 250
-30
-20
-10

0
10
20
30

freq. (Hz)

m
ag

. (
dB

)

W

0 50 100 150 200 250
-30
-20
-10

0
10
20
30

freq. (Hz)

Θ

0 50 100 150 200 250
-30
-20
-10

0
10
20
30

freq. (Hz)

Φ

(a) (b) (c)

Fig. 27. The magnitudes of the axial transmissibilities of the small isolator with an off-centre load applied at A1,

showing transmissibilities for (a) translation in Z, (b) rotation about X, and (c) rotation about Y. Results calculated

using reconstructed FRFs (solid lines) are compared to those using the measured FRFs (dotted lines).
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Fig. 28. The magnitudes of the axial transmissibilities of the medium isolator with an off-centre load applied at A1,

showing transmissibilities for (a) translation in Z, (b) rotation about X, and (c) rotation about Y. Results calculated

using reconstructed FRFs (solid lines) are compared to those using the measured FRFs (dotted lines).
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Fig. 29. The magnitudes of the axial transmissibilities of the two-stage isolator with an off-centre load applied at A1,

showing transmissibilities for (a) translation in Z, (b) rotation about X, and (c) rotation about Y. Results calculated

using reconstructed FRFs (solid lines) are compared to those using the measured FRFs (dotted lines).
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where TW , TY and TF are the transmissibilities in W, Y and F, respectively, and the subscripts 5,
6, 7 and 8 refer to the four corners of the output end plate.

The transmissibilities calculated from Eqs. (9) using both reconstructed and measured FRFs are
plotted in Figs. 27, 28 and 29 for the small, medium and two-stage isolators, respectively. In each
case, the peaks and troughs of the transmissibilities sometimes correspond to modes observed for
the relevant isolator, but often not. For example, the axial translation transmissibility for the
small isolator calculated from reconstructed FRFs in Fig. 27(a) has troughs at about 43 and
96Hz. While the latter corresponds quite closely to the rotation about Y mode (number 3 in
Table 3), the former is several Hz away from the nearest mode observed, the 49Hz rotation about
X (number 1 in Table 3).

It can also be seen that the transmissibilities calculated from the measured FRFs (the dotted
lines in the figures) quite often differ significantly from the ones based on reconstructed FRFs
(the solid lines). Often the differences are ones of magnitude, with both transmissibilities
displaying broadly similar peak and trough frequencies, but there are also several peaks appearing
on the results based on measurements that do not appear on the reconstructed ones, and that are
not low-frequency response due to modified rigid-body modes. It should also be noted that
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calculating the transmissibilities using either of the alternative solutions mentioned above gives
results that can vary widely in the magnitudes of their peaks and troughs too. Given these
observations, which point to physical irregularities in theoretically symmetrical isolators, it
would be expected that the transmissibilities would also be different if the input force was applied
to a different corner of the input end plate. It is therefore difficult to be able to claim a definitive
axial transmissibility (or set of three) when one of these isolator models is loaded with an off-
centre force.
5. Conclusions

The modal properties of two single-stage vibration isolator models and one two-stage
vibration isolator model have been extracted from FRFs measured in the three principal
directions with the isolators suspended in such a way as to approximate the free–free state. This
approach allows the full dynamics of each isolator to be observed, with no restrictions
on coupling between directions and no constraints on any degrees of freedom. The results
show a large number of modes of various types with natural frequencies up to about 240Hz
in the low-frequency range examined, where the steel plates of the isolators can be assumed
to be rigid. Many of the modes observed did not fit into the simple scheme of modes that
might have been expected, particularly in the medium isolator’s case. Although the measure-
ments in the three directions were done separately for each isolator, comparing the three sets of
results in each case reveals that several modes manifest motion in more than one of the principal
directions. This is due to significant coupling between rotational and translational degrees of
freedom, which arises from the way that the deformed rubber elements transmit forces between
the plates.

It has been demonstrated how the four-pole parameters for an isolator can be obtained
via a straightforward procedure that condenses the information in the full FRF matrix derived
from the modal properties. This would allow a partial comparison of the results of modal
analysis to other work based on the four-pole approach. However, the four-pole approach as
currently formulated is somewhat limited. It considers only translational motion in the three
principal directions, and assumes that coupling between them is negligible. In fact, as shown by
the modal results presented in this paper, rotational degrees of freedom and coupling between
directions are major features of the dynamics of the three isolators considered. Since it is
conceivable that many degrees of freedom could be involved in the motion of a complex
machine–isolator–foundation system with many isolators, these features must be taken into
account.

Axial transmissibilities of the isolators for a centrally applied force follow directly from the
four-pole parameters. Since the transmissibility is unity for the two single-stage isolators and
contains just one resonance at the symmetric axial translation mode for the two-stage isolator, not
a lot of information is provided by this type of characterisation. It has been shown that problems
arise in attempting to define transmissibility with an off-centre force, because a single axial
translation transmissibility is no longer sufficient to describe what is going on, as well as the fact
that several different values for any given transmissibility defined are possible for a real, not
perfectly symmetrical isolator. A full description, such as an FRF matrix, is therefore the only
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way to properly describe the dynamics of these small-scale isolator models, capturing all effects
including those due to coupling and physical asymmetries.
Appendix A. Numerical data for the mode shapes

The mode-shape data that follows is presented as the real and imaginary parts of the elements
of the modal vectors for each mode. These elements correspond to the measurement positions or
Table 11

Mode-shape data for the small isolator from Y-direction measurements

Coord. Mode 1: fn ¼ 39.8Hz, Zn ¼ 0:0594 Mode 2: fn ¼ 94.4Hz, Zn ¼ 0:1137

Re Im Re Im

A3 0.269949 �0.020885 0.133301 �0.024530

A4 �0.289953 0.037167 0.234945 �0.007030

B3 �0.173742 �0.008901 �0.103054 �0.013013

B4 0.275827 �0.034350 �0.173308 �0.011156

Table 12

Mode-shape data for the small isolator from Z-direction measurements

Coord. Mode 1:

fn ¼ 49.1Hz,

Zn ¼ 0:0650

Mode 2:

fn ¼ 93.1Hz,

Zn ¼ 0:0760

Mode 3:

fn ¼ 95.8Hz,

Zn ¼ 0:0705

Mode 4:

fn ¼ 99.6Hz,

Zn ¼ 0:0675

Mode 5:

fn ¼ 134.3Hz,

Zn ¼ 0:1046

Re Im Re Im Re Im Re Im Re Im

A1 0.342124 �0.029623 0.447993 �0.015807 0.217074 0.068751 0.256342 �0.011723 0.325077 0.040731

A2 0.387510 �0.030292 0.161188 0.043418 �0.588190 0.132890 �0.290969 �0.008475 0.341565 0.034073

A3 �0.380485 0.056372 �0.488945 0.054147 �0.276537 �0.043477 �0.263028 �0.001841 0.341859 0.024215

A4 �0.390439 0.050409 �0.137762 �0.009689 0.524637 �0.104029 0.288339 �0.005289 0.341684 0.032129

B1 �0.369350 0.036365 0.107495 �0.004670 �0.444634 0.153184 0.357197 0.000976 �0.366542 �0.047320

B2 �0.369810 0.024158 0.470774 �0.019903 0.184768 �0.001284 �0.384713 0.014061 �0.345129 �0.026481

B3 0.387393 �0.032516 �0.118272 �0.006088 0.474578 �0.131642 �0.370512 0.003099 �0.308324 �0.045244

B4 0.399675 �0.043823 �0.485515 0.011212 �0.160038 0.010338 0.374801 �0.001457 �0.335151 �0.063045

Table 10

Mode-shape data for the small isolator from X-direction measurements

Coord. Mode 1: fn ¼ 39.9Hz, Zn ¼ 0:0633 Mode 2: fn ¼ 100.6Hz, Zn ¼ 0:0867

Re Im Re Im

A2 0.274538 �0.030862 0.148422 �0.011037

A3 �0.300195 0.019272 0.151011 0.008128

B2 �0.221252 �0.030505 �0.167607 �0.021415

B3 0.320639 �0.016194 �0.142369 0.002964
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Table 13

Mode-shape data for the medium isolator from X-direction measurements

Coord. Mode 1:

fn ¼ 60.9Hz,

Zn ¼ 0:1130

Mode 2:

fn ¼ 64.0Hz,

Zn ¼ 0:0366

Mode 3:

fn ¼ 74.4Hz,

Zn ¼ 0:0594

Mode 4:

fn ¼ 116.3Hz,

Zn ¼ 0:1020

Re Im Re Im Re Im Re Im

A2 0.213244 0.005839 0.052306 0.011081 0.030330 0.008111 0.027738 0.002839

A3 �0.121400 �0.006509 �0.040507 �0.004500 0.125296 �0.044059 �0.035013 0.025600

B2 �0.179772 �0.010637 �0.036813 �0.009993 �0.029712 �0.009618 �0.020787 �0.003118

B3 0.119810 0.002820 0.042151 0.002096 �0.117759 0.037889 0.026033 �0.020579

Table 14

Mode-shape data for the medium isolator from Y-direction measurements

Coord. Mode 1:

fn ¼ 62.6Hz,

Zn ¼ 0:1586

Mode 2:

fn ¼ 64.6Hz,

Zn ¼ 0:0669

Mode 3:

fn ¼ 75.5Hz,

Zn ¼ 0:0580

Mode 4:

fn ¼ 102.4Hz,

Zn ¼ 0:0775

Re Im Re Im Re Im Re Im

A3 0.131394 0.034097 0.134595 �0.007767 0.053792 �0.016007 0.019099 �0.004123

A4 �0.174912 �0.018571 0.093607 0.063450 �0.049128 0.004936 0.026274 �0.000722

B3 �0.128269 �0.037077 �0.138960 �0.000437 �0.057976 0.012782 �0.025875 0.002052

B4 0.190696 0.018613 �0.073523 �0.071670 0.042353 �0.000251 �0.029919 0.010837

Table 15

Mode-shape data for the medium isolator from Z-direction measurements

Coord. Mode 1:

fn ¼ 65.7Hz,

Zn ¼ 0:0794

Mode 2:

fn ¼ 74.4Hz,

Zn ¼ 0:0633

Mode 3:

fn ¼ 118.2Hz,

Zn ¼ 0:0758

Mode 4:

fn ¼ 156.6Hz,

Zn ¼ 0:0798

Mode 5:

fn ¼ 189.8Hz,

Zn ¼ 0:0585

Mode 6:

fn ¼ 236.3Hz,

Zn ¼ 0:0651

Re Im Re Im Re Im Re Im Re Im Re Im

A1 0.078707 �0.039962 0.117013 �0.015027 0.317619 0.025035 0.140090 �0.003008 0.046273 �0.003496 0.085214 �0.059258

A2 0.110992 0.032811 �0.093997 0.002644 0.041871 0.014080 0.153710 0.008866 0.055038 0.000631 0.046234 �0.034238

A3 �0.129090 0.022048 �0.125944 0.011356 �0.140774 �0.004077 �0.296135 0.001782 �0.033771 0.005133 �0.049501 0.034547

A4 �0.147230 �0.059308 0.120026 �0.007118 0.178533 0.014167 �0.299158 �0.013856 �0.012257 �0.004905 0.012640 0.000734

B1 0.170872 �0.009002 0.125125 �0.006245 �0.314155 �0.034078 �0.152305 �0.002143 �0.043826 �0.001190 �0.088912 0.058491

B2 0.188479 0.074095 �0.145832 0.013222 �0.016655 �0.010952 �0.135098 �0.009494 �0.056984 0.000499 �0.046862 0.032887

B3 �0.136175 0.016161 �0.134397 0.007568 0.116347 0.006432 0.281106 0.005482 0.026393 �0.002427 0.048382 �0.031275

B4 �0.155266 �0.063670 0.126596 �0.011973 �0.186103 �0.012983 0.273310 0.014834 0.043753 �0.001072 0.007028 �0.006252
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coordinates. The natural frequency and modal damping of each mode are also repeated here for
convenience. Data for the small isolator appears in Tables 10–12; data for the medium isolator in
Tables 13–15; and data for the two-stage isolator in Tables 16–18.



A
R
TIC

LE
IN

PR
ES

S
Table 16

Mode-shape data for the two-stage isolator from X-direction measurements

Coord. Mode 1:

fn ¼ 47.2Hz,

Zn ¼ 0:0464

Mode 2:

fn ¼ 65.5Hz,

Zn ¼ 0:0596

Mode 3:

fn ¼ 67.5Hz,

Zn ¼ 0:0518

Mode 4:

fn ¼ 82.3Hz,

Zn ¼ 0:0528

Mode 5:

fn ¼ 101.7Hz,

Zn ¼ 0:0601

Re Im Re Im Re Im Re Im Re Im

A2 0.148319 �0.000699 0.087695 0.003079 0.078209 �0.005558 0.088356 �0.001707 0.022650 �0.006682

A3 �0.146960 0.009399 0.129376 �0.006619 0.055273 0.001192 �0.083663 0.004128 0.069952 �0.005090

B2 0.003857 0.000395 0.006492 �0.019129 �0.148958 0.015024 �0.173424 0.000780 �0.096846 0.012425

B3 0.000801 �0.000284 0.008623 �0.008741 �0.150410 0.006736 0.162480 �0.007131 �0.111150 0.002276

C2 �0.152578 0.001974 �0.127818 0.013774 0.089256 �0.011012 0.083647 �0.000198 0.046453 �0.007254

C3 0.141014 �0.011442 �0.111219 0.010514 0.099510 �0.007881 �0.082061 0.004672 0.041031 0.001901

Table 17

Mode-shape data for the two-stage isolator from Y-direction measurements

Coord. Mode 1:

fn ¼ 47.2Hz,

Zn ¼ 0:0470

Mode 2:

fn ¼ 61.0Hz,

Zn ¼ 0:0576

Mode 3:

fn ¼ 67.9Hz,

Zn ¼ 0:0548

Mode 4:

fn ¼ 82.1Hz,

Zn ¼ 0:0570

Mode 5:

fn ¼ 121.3Hz,

Zn ¼ 0:0726

Re Im Re Im Re Im Re Im Re Im

A3 0.167181 �0.002508 0.104599 �0.007363 0.097347 �0.002129 0.105418 �0.001846 0.024651 �0.004204

A4 �0.175491 0.011256 0.118203 �0.007273 0.092944 �0.003215 �0.103892 0.004118 �0.031067 0.003635

B3 0.003811 0.000667 �0.008224 �0.009236 �0.157106 �0.001040 �0.203779 0.003389 0.033356 0.012683

B4 �0.000816 0.000012 0.016769 �0.000230 �0.181299 0.022488 0.191223 �0.006479 0.043873 �0.005909

C3 �0.165578 0.009004 �0.145395 0.008177 0.067599 �0.003497 0.111603 �0.008226 �0.023264 �0.006368

C4 0.171994 �0.011463 �0.109964 �0.002349 0.097389 �0.018646 �0.089848 0.004265 �0.009169 0.002001
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Table 18

Mode-shape data for the two-stage isolator from Z-direction measurements

Coord. Mode 1:

fn ¼ 61.1Hz,

Zn ¼ 0:0515

Mode 2:

fn ¼ 65.7Hz,

Zn ¼ 0:0517

Mode 3:

fn ¼ 67.6Hz,

Zn ¼ 0:0526

Mode 4:

fn ¼ 93.0Hz,

Zn ¼ 0:1110

Mode 5:

fn ¼ 98.3Hz,

Zn ¼ 0:0796

Re Im Re Im Re Im Re Im Re Im

A1 0.136143 �0.012527 0.146102 �0.010358 0.087730 0.003122 0.100289 �0.060674 0.129559 �0.098823

A2 0.154867 �0.028934 �0.164663 0.025612 �0.063740 0.016315 0.074889 �0.165016 0.093752 �0.139262

A3 �0.148215 0.018366 �0.173896 0.014920 �0.093222 �0.005875 0.046298 �0.133994 0.096903 �0.104939

A4 �0.134331 0.025123 0.145541 �0.019159 0.048197 �0.009746 0.081199 �0.050149 0.148385 �0.088122

B1 0.129981 �0.014489 0.116319 �0.012948 �0.022336 0.032382 �0.000880 0.002478 0.003974 0.001004

B2 0.147355 �0.025421 �0.120249 0.021628 0.023447 �0.008311 0.012445 �0.006520 0.004674 �0.010870

B3 �0.136868 0.017337 �0.126666 0.013796 0.007260 �0.030352 0.001663 0.002231 0.001345 �0.001354

B4 �0.172477 0.014407 0.137590 �0.006999 0.015830 �0.001492 0.024703 �0.004567 0.029508 �0.012834

C1 0.144819 �0.027307 0.133416 �0.032486 �0.090492 0.082971 �0.099659 0.080794 �0.102752 0.100171

C2 0.169441 �0.036441 �0.126099 0.035136 0.094716 �0.042390 �0.080002 0.208187 �0.071750 0.186388

C3 �0.152678 0.028013 �0.136856 0.034830 0.107873 �0.091290 �0.041991 0.164920 �0.092406 0.136627

C4 �0.151359 0.027920 0.106693 �0.029293 �0.081014 0.033780 �0.070592 0.067998 �0.131239 0.078692

Coord. Mode 6:

fn ¼ 100.6Hz,

Zn ¼ 0:0558

Mode 7:

fn ¼ 121.2Hz,

Zn ¼ 0:0621

Mode 8:

fn ¼ 155.3Hz,

Zn ¼ 0:0703

Mode 9:

fn ¼ 166.9Hz,

Zn ¼ 0:0658

Mode 10:

fn ¼ 200.8Hz,

Zn ¼ 0:0743

Re Im Re Im Re Im Re Im Re Im

A1 0.212684 0.016378 0.197625 �0.010955 0.101135 �0.009811 0.108258 0.000754 0.115685 �0.003072

A2 �0.140422 0.033450 0.229591 �0.024006 �0.160843 0.006675 0.068158 �0.014344 0.127326 �0.012014

A3 �0.131111 0.032113 �0.214841 0.010530 �0.151151 0.012116 0.049895 �0.009726 �0.125675 0.003741

A4 0.231134 0.022964 �0.208157 0.009079 0.105180 0.002768 0.102402 0.000291 �0.118863 0.002627

B1 0.009512 0.002580 0.008677 �0.002451 �0.204778 0.018991 �0.217814 0.004870 �0.237271 0.010275

B2 �0.005689 0.001076 0.000917 0.000056 0.337345 �0.058023 �0.107732 0.035481 �0.260904 0.036231

B3 �0.001861 �0.000419 �0.005081 0.001849 0.297036 �0.036018 �0.092408 0.022831 0.257613 �0.012828

B4 0.024422 0.013072 �0.012088 �0.007195 �0.262327 0.019404 �0.248332 �0.013085 0.266772 �0.020606

C1 �0.206374 0.005244 �0.219107 0.023060 0.080997 0.002421 0.100832 �0.004962 0.123349 0.002765

C2 0.116397 �0.036503 �0.241996 0.039933 �0.151488 0.031975 0.053564 �0.016881 0.135477 �0.013830

C3 0.108572 �0.043129 0.231561 �0.020133 �0.127169 0.006994 0.051282 �0.012178 �0.132659 0.000966

C4 �0.214830 �0.007089 0.221141 �0.020667 0.101151 �0.014437 0.109911 �0.005356 �0.128985 0.007516
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